Notes $1.2 \rightarrow$ Be familiar with these powers:

$2^{2}=\frac{\mathbf{2}}{1}$	$\frac{\mathbf{3}}{1}$	$\frac{\mathbf{4}}{1}$	$\frac{5}{1}$	$\frac{\mathbf{6}}{1}$	$\frac{7}{1}$	$\frac{\mathbf{8}}{1}$	$\frac{9}{1}$
$2^{1}=2$	3	4	5	6	7	8	9
$2^{2}=4$	9	16	25	36	49	64	81
$2^{3}=8$	27	64	125	216	343	512	729
$2^{4}=16$	81	256	625				
$2^{5}=32$	243						

These values are reasonable to find without a calculator!

Exponents and Radicals

See notes in ebook regarding exponent rules!

$$
\begin{aligned}
& x^{m} x^{n}=x^{m+n} \\
& \left(x^{m}\right)^{n}=x^{m n} \\
& (x y)^{n}=x^{n} y^{n} \\
& x^{1 / n}=\sqrt[n]{x} \\
& \sqrt[n]{x y}=\sqrt[n]{x} \sqrt[n]{y} \\
& \sqrt[m]{\sqrt[n]{x}}=\sqrt[n]{\sqrt[m]{x}}=\sqrt[m n]{x} \\
& \frac{x^{m}}{x^{n}}=x^{m-n} \\
& x^{-n}=\frac{1}{x^{n}} \\
& \left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}} \\
& x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m} \\
& \sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}}
\end{aligned}
$$

Warm-up: Exponents

Quiz yourself and see what
 you remember!!

Actual quiz will be on Tuesday.

 NO CALCULATOR!!
NO CALCULATOR!!

Simplify. (Keep in exponential form.)

1. $a^{3} \cdot a^{4}=$
2. $2^{3} \cdot 2^{4}=$
3. $\left(\mathrm{a}^{3}\right)^{4}=$
4. $\left(5^{3}\right)^{4}=$
5. $\frac{a^{8}}{a^{2}}=$
6. $\frac{4^{8}}{4^{2}}=$
7. $\left(\frac{a}{b}\right)^{5}=$
8. $(a b)^{5}=$
9. $\left(a^{2} b^{3}\right)^{5}=$
10. $\left(2 a^{2} b^{3}\right)^{5} \cdot 3 a^{4} b^{10}=$
11. $\left(9 x^{8}\right)^{1 / 2}=$
(\#12-20 should not contain exponents.)
12. $25^{1 / 2}=$
13. $(-27)^{1 / 3}=$
14. $16^{1 / 4}=$
15. $4^{3 / 2}=$
16. $-3^{4}=$
17. $(-3)^{4}=$
18. $3^{-2}=$
19. $5^{0}=$
20. $0^{5}=$

Rewrite without negative exponents and simplify:
21. $\frac{x^{-2} y^{3}}{4^{-1 / 2}}$

Warm-up (practice quiz)

Check answers:

1. a^{7}
2. a^{12}
3. 5^{12}
4. a^{6}
5. 4^{6}
6. $\frac{a^{5}}{b^{5}}$
7. $a^{5} b^{5}$
8. $a^{10} b^{15}$
9. $32 a^{10} b^{15} \cdot 3 a^{4} b^{10}=96 a^{14} b^{25}$
10. $3 x^{4}$

Warm-up (practice quiz)

Check answers: 12. 5 16. -81

$$
\begin{array}{rrrr}
13 . & -3 & \text { 17. } & 81 \\
\text { 14. } & 2 & 18 . & 1 / 9
\end{array}
$$

15. 8
16. 1
17. 0

Now for the last problem:

$$
\text { 21. } \frac{x^{-2} y^{3}}{4^{-1 / 2}}=\frac{4^{\frac{1}{2} \cdot y^{3}}}{x^{2}}
$$

$=2 y^{3}$

1.1 from yesterday Refer to book for extra examples:

Example 4 Union and Intersection of Sets

If $S=\{1,2,3,4,5\}, T=\{4,5,6,7\}$, and $V=\{6,7,8\}$, find the sets $S \cup T, S \cap T$, and $S \cap V$.

Solution

$$
\begin{aligned}
& S \cup T=\{1,2,3,4,5,6,7\} \quad \text { All elements in } S \text { or } T \\
& S \cap T=\{4,5\} \quad \text { Elements common to both } S \text { and } T \\
& S \cap V=\emptyset \quad S \text { and } V \text { have no element in common }
\end{aligned}
$$

Now Try Exercise 41

1.1 Similar to \#47-59odd:

Example 5 Graphing Intervals

Express each interval in terms of inequalities, and then graph the interval.
(a) $[-1,2)=\{x \mid-1 \leq x<2\} \longrightarrow$
(b) $[1.5,4]=\{x \mid 1.5 \leq x \leq 4\} \longrightarrow \xrightarrow[4]{P}$
(c) $(-3, \infty)=\{x \mid-3<x\} \longrightarrow$

Now Try Exercise 47

1.1 Example for \#77 can be found under intro notes for "real numbers"

Note

A repeating decimal such as

$$
x=3.5474747 \ldots
$$

is a rational number. To convert it to a ratio of two integers, we write

$$
\begin{aligned}
1000 x & =3547.47474747 \ldots \\
10 x & =35.47474747 \ldots \\
990 x & =3512.0
\end{aligned}
$$

Thus $x=\frac{3512}{990}$. (The idea is to multiply x by appropriate powers of 10 and then
subtract to eliminate the repeating part.)

1.1 from yesterday:

If you have questions, see ebook for examples that are similar to the assigned problems.

Assigned problem
\#23-28
\#30
\#41-43
\#47-59 odd
\#69-72
\#75
\#77

See ebook for example

\#1 and \#2
\#3
\#4
\#5
\#7
\#8
See intro notes/example for real numbers

Helpful tips for navigating the ebook:

\therefore CENGAGE MINDTAP

Exponential Notation
If a is any real number and n is a positive integer, then the nth power of a is

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n \text { factors }}
$$

The number - in onllon tha heon and - io called the exponent.
take note
Select text while reading to see
options for adding notes and
options for adding notes and
highlights.
(a) $\left(\frac{1}{2}\right)^{5}=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{32}$
(b) $(-3)^{4}=(-3) \cdot(-3) \cdot(-3) \cdot(-3)=81$
(c) $-3^{4}=-(3 \cdot 3 \cdot 3 \cdot 3)=-81$

Now Try Exercise 17

D Note the distinction between $(-3)^{4}$ and -3^{4}. In $(-3)^{4}$ the exponent applies to -3 , but in
-3^{4} the exponent JUMP Around
Jump to any page in the chapter.
and track your location.

WHAT IS THAT?
Keep an eye out for: Footnotes*,
images and tables \uparrow

Helpful tips for navigating the ebook:

Familiarity with the following rules is essential for our work with exponents and bases. In the table the bases a and b are real numbers, and the exponents m and n are integers.

Laws of Exponents

Law	Example	Description
1. $a^{m m} a^{n}=a^{m+n}$	$3^{2} \cdot 3^{5}=3^{2+5}=3^{7}$	To multiply two powers of the same number, add the exponents.
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$	$\frac{3^{5}}{3^{2}}=3^{5-2}=3^{3}$	To divide two powers of the same number, subtract the exponents.
3. $\left(a^{m}\right)^{n}=a^{m n}$	$\left(3^{2}\right)^{5}=3^{2.5}=3^{10}$	To raise a power to a new power, multiply the exponents.
4. $(a b)^{n}=a^{n} b^{n}$	$(3 \cdot 4)^{2}=3^{2} \cdot 4^{2}$	To raise a product to a power, raise each factor to the power.
5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	$\left(\frac{3}{4}\right)^{2}=\frac{3^{2}}{4^{2}}$	To raise a quotient to a power, raise both numerator and denominator to the power.
6. $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}$	$\left(\frac{3}{4}\right)^{-2}=\left(\frac{4}{3}\right)^{2}$	To raise a fraction to a negative power. invert the fraction and change the sign of the exponent.
7. $\frac{a^{-n}}{b^{-m}}=\frac{b^{n}}{a^{n}}$	$\frac{3^{-2}}{4^{-5}}=\frac{4^{5}}{3^{2}}$	To move a number raised to a power from numerator to denominator or from denominator to numerator, change the sign of the exponent.

Look for videos with further information and explanations:

Rules for Working with Exponents

© Video: Rules for Working with Exponents

Copyright © Cengage Learning. All Rights Reserved

Helpful tips for navigating the ebook:

Chapter 1: Fundamentals
Chapter Contents

1.3 Algebraic Expressions

A variable is a letter that can represent any number from a given set of numbers. If we start with variables, such as x, y, and z , and some real numbers and combine them using addition, subtraction, multiplication, division, powers, and roots, we obtain an algebraic expression. Here are some examples:
$2 x 2-3 x+4 x+10 y-2 z y 2+4$
A monomial is an expression of the form axk, where a is a real number and k is a nonnegative integer. A binomial is a sum of two monomials and a trinomial is a sum of three monomials. In general, a sum of monomials is called a polynomial. For example, the first expression listed above is a polynomial, but the other two are not.

Polynomials

A polynomial in the variable x is an expression of the form

$$
a n x n+a n-1 x n-1+\cdots+a 1 x+a 0
$$

where $a 0, a 1, \ldots, a n$ are real numbers, and n is a nonnegative integer. If $a n \neq 0$, then the polynomial has degree n. The monomials akxk that make up the polynomial are called the terms of the polynomial.

Note that the degree of a polynomial is the highest power of the variable that appears in the polynomial.

Polynomial	Type	Terms	Degree
$2 \times 2-3 x+4$	trinomial	$2 \times 2,-3 x, 4$	2
$\times 8+5 x$	binomial	$\times 8,5 x$	8

